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A Novel Fault-Location Method for HVDC
Transmission Lines Based on Similarity

Measure of Voltage Signals
Mohammad Farshad, Student Member, IEEE, and Javad Sadeh

Abstract—In this paper, a method for fault locating in HVDC
transmission lines is proposed which only uses the voltage signal
measured at one of the line terminals. The postfault voltage signal,
in a relatively short-time window, is considered and the corre-
sponding fault location is estimated based on the similarity of the
captured voltage signal to existing patterns. In this approach, the
Pearson correlation coefficient is used to measure the similarity.
Despite simplicity and low complexity of the proposed fault-loca-
tion method, it does not suffer from the technical problems which
are associated with the traveling-wave-based methods, such as
the difficulty of identifying traveling wavefronts or the strong
dependency of accuracy on the sampling frequency. Numerous
training and test patterns are obtained by simulating various fault
types in a long overhead HVDC transmission line under different
fault location, fault resistance, and prefault current values. The
accuracy of the proposed fault-location method is verified using
these patterns.

Index Terms—HVDC system, pattern recognition, similarity
measure, single-end fault-location method.

I. INTRODUCTION

H VDC systems provide an opportunity to transfer large
amounts of power over long distances more economi-

cally and with lower losses compared to HVAC transmission
systems. Accurately locating permanent and nonpermanent
faults in long HVDC transmission lines is very important in
corrective and preventive maintenance operations speedup and
maintaining continuity of power transmission. Most of the
methods, which have been proposed so far for fault locating
in HVDC transmission lines, are based on the traveling-wave
theory [1]–[7]. The traveling-wave-based methods are very
accurate and valuable studies have been performed to improve
their performance considering different system configurations,
such as the combination of overhead lines and cables [1], and
the star-connected multiterminal topologies [2]. However, as
mentioned in [8], the traveling-wave-based methods suffer
from inherent problems, some of which include the necessity
of having experience and skill for wavefront identification,
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and the high dependency of accuracy on the sampling rate. In
this regard, a nontraveling-wave time-domain fault-location
principle has been proposed in [8]. In the method of [8], the
voltage profile along the line was calculated using two-terminal
voltage and current measurements and the corresponding fault
location was identified from the obtained voltage distribution.
As an alternative to the existing methods, a fault-location

method based on the machine-learning and the pattern-recog-
nition techniques can demonstrate appropriate performance
and flexibility in different conditions when encountering in-
herent characteristics and specifications of HVDC systems.
When using strategies based on the machine-learning and the
pattern-recognition techniques, the key point is to determine
appropriate input features and choose an algorithm and struc-
ture in accordance with the specific problem to be solved.
Single-ended or double-ended measurements can be used for

fault locating in HVDC transmission lines. Usually, the methods
based on double-ended measurements [1]–[4], [8] are more ac-
curate. However, more reliability in access to required mea-
sured data, no need for transmitting and synchronizing mea-
surements of both ends, less complexity, and lower cost are
some of the advantages of the methods which are based on
single-ended measurements [4]–[7]. Voltage and current sig-
nals are the commonly available records in the line terminals.
Founding the fault-location method based on just one of these
signals can be effective in terms of preventing the combination
of measurement errors and increasing the reliability in access to
required data.
In this paper, a learning-based method for fault locating in

HVDC transmission lines is proposed. In the proposed method,
samples from a timewindow of the postfault voltage signal mea-
sured at one of the line terminals are considered as the input
features. The fault location is estimated by measuring the sim-
ilarity between the input pattern and existing patterns based on
the Pearson correlation coefficient.
The rest of this paper is organized as follows. In Section II,

the main idea and concept of the proposed fault-location ap-
proach are explained. In Section III, numerous training and test
patterns are generated through simulating different fault types
in a sample bipolar HVDC system with different values for the
fault location, fault resistance, and the prefault current. Then,
the proposed method is applied to the training and test patterns,
and the fault-location results are presented. Finally, concluding
remarks are given in Section IV.
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Fig. 1. Single-line diagram of the sample system under study, adopted from the CIGRE benchmark [10].

II. MAIN IDEA AND CONCEPT

A. Voltage Signals and Shape Similarity

Fig. 1 illustrates the single-line diagram of an HVDC system
with the nominal voltage of 500 kV and the rated transmis-
sion power of 2000 MW. The parameters of this bipolar system,
which are simulated through PSCAD/EMTDC software, [9] are
adopted from the CIGRE monopolar system [10], except for the
transmission line. It is worth noticing that the 1000-km-long
overhead transmission line of the system is simulated using the
frequency-dependent model and based on the configuration of
Fig. 2(a)[11]. Also, the equivalent circuit of Fig. 2(b) is used
to model the various fault types. In this figure, each indi-
cates two-state switching resistance which can be “on” or “off”
to model different fault types. Each has a very large resis-
tance and is nearly open circuit in the “off” state; and in the “on”
state, it has a resistance equal to the specified fault resistance
value. It worth noting that the sampling frequency of signals in
the system under study is adopted to be 80 kHz.
Fig. 3 shows the dc voltage and current signals measured at

the rectifier station for a positive-pole-to-ground (PG) fault oc-
curring in about 0.45 s and at 100 km from the measuring point.
It should be noted that there are two main factors, including
the oscillations due to capacitor energy storage [12] and the
fault-generated transients due to reflections of traveling waves
[13], that can affect the shape of the postfault voltage signal
while having a sensible correlation with the fault distance.
Fig. 4 shows the positive-pole voltage signals after PG faults

at the distance of 100, 250, and 400 km from the rectifier station
(measuring point) in the following cases:
Case 1) fault resistance of 0.01 and prefault current of

1200 A in the HVDC line.

Fig. 2. (a) The configuration of transmission line. (b) The equivalent circuit in
modeling different fault types.

Case 2) fault resistance of 30 and prefault current of 1200
A in the HVDC line.

Case 3) fault resistance of 10 and prefault current of 600
A in the HVDC line.

Case 4) fault resistance of 50 and prefault current of 1800
A in the HVDC line.

The postfault signals illustrated in Fig. 4 are captured from
the moment of voltage drop to less than 400 kV. As can be seen
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Fig. 3. DC voltage and current signals for a PG fault at 100 km from the rectifier
station (measuring point).

Fig. 4. Positive-pole voltage signals after PG faults at the distance of: (a) 100,
(b) 250, and (c) 400 km.

from this figure, the postfault voltage signals of different fault
distances have dissimilar shapes. Also, with little attention, it
can be observed that despite the different conditions of Case

1 to Case 4, the shapes of voltage signals are almost similar
for each specific fault location. In summary, it can be compre-
hended that despite the variations in fault resistance and pre-
fault current, the overall shape of the voltage signal is almost
the same for a specific fault location; but it changes with fault
location. This characteristic can be used for fault locating. To
this end, a criterion should be defined for measuring the shape
similarity of signals. The Pearson correlation coefficient is one
of the efficient similarity measures which can be defined as fol-
lows for the two signal samples and

[14]

(1)

where is the Pearson correlation coefficient of the two
signals and , and . The value for in-
dicates perfect positive linear correlation; the value 0 indicates
no linear correlation at all, and the value indicates perfect
negative linear correlation. In fact, a larger value of for two
signals indicates more correlation and similarity between them.
Table I presents the values for the signal pairs illustrated in
Fig. 4. The results presented in this table confirm the intuitive
results obtained from the visual inspection of the voltage wave-
forms.

B. Proposed Fault-Location Algorithm

The voltage signals required for fault locating are measured at
one terminal station of HVDC systems, in front of the smoothing
reactor at the dc line side. There are publishedworks focusing on
conventional [15] and valuable new methods [16], [17] for fault
detection and classification in HVDC systems which can be uti-
lized before executing the proposed fault-location algorithm. In
the proposed method, after fault detection and classification,
which are not in the scope of this paper, the voltage signal of
the faulted pole, which has been recorded in the buffer memory,
is used to extract the required samples. It is worth noting that
in the case of the faults that involve both of the line poles, one
of the faulted poles, for example the positive pole, is selected
and its voltage signal is used for fault locating. In the proposed
fault-location approach, required voltage samples are gathered
from the moment that the absolute value of voltage drops below
the threshold value until 10 ms later. In fact, these samples
are the pattern’s features. After extracting the required signal
samples and generating the new pattern, the similarity of this
pattern to each of existing patterns in the database is measured,
and the corresponding fault location is estimated by weighted
average of the target values corresponding to the most sim-
ilar patterns. It is clear that the proposed fault-location method
is founded on the -nearest neighbor -NN) principle. There-
fore, the similarity measure should be converted to a positive
valued distance metric. The following equation is used for this
purpose [18]:

(2)
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TABLE I
CORRELATION COEFFICIENTS FOR THE SIGNAL PAIRS OF FIG. 4

where is the Pearson distance of the signals and ,
and . Greater values of the similarity measure
, that is , closer to , lead to smaller values of the distance .
The fault location corresponding to the new pattern is estimated
based on the following equation [19]:

(3)

where is the corresponding fault location of the existing

pattern , is the estimated fault location corresponding
to the new pattern , is the set of patterns most similar
to the new pattern , and is the Pearson distance of
the existing pattern and the new pattern .
It is worth noting that in the proposed method, a separate

database of training patterns should be provided for each fault
type and they shall be used based on the type of occurring fault.
In summary, the proposed fault-location algorithm consists of

the following steps:
Step 1) Receiving the fault-type information as well as the

buffered voltage signal of the faulted pole.
Step 2) Determining the moment in which the absolute value

of voltage sample drops below the threshold value
and gathering the voltage samples from this

moment until 10 ms later.
Step 3) Generating the new pattern using the extracted

voltage samples as the features.
Step 4) Determining the most similar patterns to the new

pattern, by similarity measuring and searching
through the database corresponding to the occurred
fault type.

Step 5) Estimating the fault location corresponding to the
new pattern based on the weighted average of cor-
responding fault locations of the most similar pat-
terns [using (3)].

III. NUMERICAL STUDIES

Here, the location of the positive-pole-to-ground (PG), posi-
tive-pole-to-negative-pole (PN), and positive-pole-to-negative-
pole-to-ground (PNG) faults in the system of Fig. 1 are con-
sidered. The PSCAD/EMTDC software [9] is utilized for the
system simulation, and the MATLAB environment [20] is used
for implementation of the proposed fault-location algorithm.

A. Generating the Training and Test Patterns

In this phase, training and test patterns are generated through
simulating various fault types in the sample system, and by
changing the fault location, fault resistance, and prefault current.
In fact, these patterns are generated based on combinations of
various conditions of the PG, PN, and PNG faults; theses con-
ditions for training cases are as follows.
• Fault distance from the measuring end varies from 10 to
990 km with the step of 2 km.

• Fault resistance takes the values of 0.01, 10, 30, 50, and
100 .

• Prefault current of the HVDC line takes the values of 600,
1200, and 1800 A.

Also, the following conditions are considered in generation
of test patterns:
• Faults occur at 25 different locations randomly.
• Fault resistance takes the values of 2, 15, 20, 40, 60, and
80 .

• Prefault current of the HVDC line takes the values of 800,
1000, 1400, and 1600 A.

All of the test and training patterns are generated using the
method provided in Steps 1)–3) of the proposed algorithm (see
Section II-B). Since all fault types considered in this study in-
volve the positive pole, only the positive-pole voltage measured
at the rectifier station is used in generating the training and test
patterns. Also, the threshold value , which is used in de-
termining the beginning moment of the 10-ms data window, is
set to 400 kV (80% of the nominal dc voltage). Considering
the sampling frequency of 80 kHz and the 10-ms data window,
it can be comprehended that each generated pattern consists of
800 features.

B. Fault-Location Results

Prior to testing the fault locator, the value of is determined
through applying the 10-fold cross-validation process on the
training patterns. After applying this process on the training pat-
terns, the obtained value for all three fault types was 4. After
adjusting the value for each fault type, Steps 4) and 5) of the
proposed algorithm (see Section II-B) are performed on the test
patterns, and the fault-location results are provided.
The percentage error in the fault-location estimate is com-

puted by using the following equation and considered as the per-
formance index:

(4)
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TABLE II
FAULT-LOCATION RESULTS FOR THE DIFFERENT FAULT TYPES AND FAULT DISTANCES

where is the estimated fault distance from the measuring
end, is the actual fault distance from the measuring end,
and is the total length of the transmission line.
Based on the conditions mentioned in Section III-A, re-

garding each fault type, there are a total number of 24 test
patterns for each fault distance. Table II provides the estimation
results for different fault distances from the rectifier station,
including the minimum, maximum, and average of percentage
errors and the fraction of percentage errors bigger than 1%. As
can be seen from this table, the overall average errors for the
PG, PN, and PNG faults are 0.2881%, 0.0777%, and 0.0726%,
respectively. Also, it can be observed that the estimation errors
of the proposed fault-location method are in a fairly acceptable
range, and the overall fractions of fault-location errors bigger
than 1% are as low as 2.1667%, 0.1667%, and 0% for the PG,
PN, and PNG faults, respectively. The average errors for the
PN and PNG faults are far less than those for the PG faults; it
means that in the PN and PNG fault cases, the correlation of
voltage signals in each fault location, despite the changes in
the fault conditions, is more than that of the PG fault cases. It
is worth noting that in the PN and PNG fault cases, the fault
voltage level is twice that in the PG fault cases. If the training
set is extended by considering more fault locations, fault resis-
tances, and prefault currents with relatively small step changes,
it is expected to achieve more accurate test results, especially
for the PG faults; however, this will increase the time required
for the simulations and preparation of the training set.
Based on the conditions mentioned in Section III-A, re-

garding each fault type, there are a total number of 100 and

150 test patterns for each fault resistance and prefault current,
respectively. The fault-location results for the different fault
resistance and prefault current values are presented in Tables III
and IV, respectively. As can be seen from these tables, the
accuracy of the fault-location method remains in an acceptable
range for the different values of fault resistance and prefault
current. However, in Table III, an increase in the fault resistance
has led to a decrease in the prediction accuracy, especially for
the PG faults.

C. Other Similarity/Distance Measures

There are other similarity/distance measures which can
be considered as alternatives to the Pearson’s measure. The
cosine similarity is another similarity measure that can be used
instead of the Pearson correlation coefficient in the proposed
fault-location algorithm. This measure, which represents the
similarity of two vectors’ directions, can be defined as fol-
lows for the two sample vectors and

[14]:

(5)

where is the cosine similarity or the cosine of angle be-
tween the two vectors and and, thus, .
The greater values of indicate higher similarity of two signals.
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TABLE III
RESULTS FOR THE DIFFERENT FAULT TYPES AND FAULT RESISTANCES

TABLE IV
RESULTS FOR THE DIFFERENT FAULT TYPES AND PREFAULT CUIRRENTS

In order to convert the similarity measure to a positive valued
distance metric, a procedure similar to (2) can be applied

(6)

where is the cosine distance of the two signals and ,
and .
Now, in the proposed fault-location algorithm, the cosine

similarity and the cosine distance are used instead of the
Pearson correlation coefficient and the Pearson distance, re-
spectively. In this case, the obtained average fault-location
errors for the PG, PN, and PNG faults are 0.8682%, 0.1041%,
and 0.0830%, respectively. It can be observed that compared
to the case of using the Pearson correlation coefficient, the
accuracy of fault-location estimation has decreased, especially
for the PG faults.
Another commonly used distance measure is the Eu-

clidean metric. The Euclidean distance of the two signals
and , is

calculated as follows:

(7)

Considering the interpretation that smaller distance values
correspond to higher similarity of vectors, the Euclidean dis-
tance is used in the fault-location algorithm. It is worth noting
that in order to have smaller numerical values for Euclidean dis-
tances, per-unit values of voltage samples are considered (with
the reference base voltage of 500 kV). In this case, the obtained
average fault-location errors for the PG, PN, and PNG faults
are 1.0452%, 0.1053%, and 0.0842%, respectively. It can be ob-
served that compared to the case of using the Pearson correlation
coefficient as well as the case of using the cosine similarity, the
accuracy of fault-location estimation has decreased, especially
for the PG faults.

D. Current Instead of Voltage

In this section, instead of the voltage signal, the current signal
is used in the fault-location algorithm and, thus, the training
and test patterns are regenerated. However, the voltage signal is
used for determining the beginning moment of the 10-ms data
window of the postfault current signal as well. In this case, the
average fault-location error for the PG, PN, and PNG faults is
1.4747%, 0.5270%, and 0.4334%, respectively. It can be ob-
served that in the case of using the current signal instead of the
voltage signal, the accuracy of fault locating has decreased.
As can be observed in Fig. 3, immediately after the fault

occurrence in the transmission line, the current signal faces a
momentary overshoot, and then as a result of the control re-
sponse, goes to the minimum value with some oscillations due
to the oscillations of the voltage signal [12]. The momentary
overshoot and the control response make the postfault current
signal shapes relatively similar in various fault locations; how-
ever, there is still a little discriminant dissimilarity, but it is not
enough for accurate fault locating.

E. Effect of Sampling Frequency

Here, the effect of lower sampling frequencies is studied
through downsampling the existing voltage signals. Note that
using lower sampling frequencies in a fixed length of the time
window will reduce the number of features in the patterns.
The fault-location algorithm is applied on the voltage signals
with various sampling frequencies, and the average percentage
errors for the different sampling frequencies are presented
in Table V. As can be seen from this table, the dependency
of the method’s accuracy on the sampling frequency is not
considerable. In fact, the sampling frequency can be set to a
value as low as 5 kHz with a little loss of accuracy.

F. Effect of Noisy Measurements

Here, the noise impact on the proposed algorithm is investi-
gated. In this regard, the voltage samples used in the test pat-
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TABLE V
PERCENTAGE ERRORS FOR THE DIFFERENT FAULT TYPES

AND SAMPLING FREQUENCIES

TABLE VI
PERCENTAGE ERRORS FOR THE DIFFERENT FAULT

TYPES AND ADDITIVE NOISE LEVELS

terns are corrupted by white Gaussian noise in different levels,
while the training patterns remain as before. Then, the fault-lo-
cation algorithm is applied on the noisy test patterns. The av-
erage percentage errors in fault-location estimation for test pat-
terns with different signal-to-noise ratios (SNRs) are presented
in Table VI. As can be observed from this table, the proposed
method is relatively robust to the additive noise. However, con-
sidering a high level of additive noise, such as the one with the
SNR of 10 dB, the accuracy may degrade to some extent com-
pared to the noiseless case (infinite SNR).

G. Effect of Length of the Time Window

The length of the time window for extracting the voltage sam-
ples in the fault-location algorithm has been set to 10 ms. Note
that by considering wider time windows in a specific sampling
frequency, the dimension of feature vectors will increase. In this
section, the proposed method is applied to the generated pat-
terns considering various time window lengths, and the average
errors for the different data windows are illustrated in Fig. 5. As
can be seen from this figure, the average estimation error for the
PG faults has increased with increasing the time window length,
and the lowest average error belongs to the 5-ms time window.
On the other hand, for the PN and PNG faults, the average esti-
mation errors have their highest value in the 5-ms time window,
but in the wider time windows, the average errors are almost
constant in a relatively lower value. According to the results of
Fig. 5, the adoption of the 10-ms data window seems reasonable.
However, it is also possible to consider different time window
lengths for different fault types.
It is worth noticing that the variations of estimation error

versus the length of the time window can be different depending
on the considered conditions for patterns generation or the used
similarity measure. For instance, the average errors for the dif-
ferent data windows in the case of using the cosine similarity
measure are illustrated in Fig. 6. As can be seen from this figure,
the 20-ms data window is suitable for all fault types; however,
even with this length of time window, the prediction accuracy
is lower compared to the case of using the Pearson correlation
coefficient.

Fig. 5. Average percentage errors for the different fault types and time window
lengths (using Pearson’s measure).

Fig. 6. Average percentage errors for the different fault types and time window
lengths (using the cosine similarity measure).

H. Comparison With Other Works

Unlike the proposed method, the traveling-wave-based
fault-location methods generally require a high sampling fre-
quency of several megahertz to obtain the desired accuracy,
and as shown in [3] and [7], the accuracy of them may degrade
significantly with decreasing the sampling frequency to about
100 kHz. In [5], using a traveling-wave-based method and by
adoption of the sampling frequency of 80 kHz, the location
estimation of only five faults with zero fault resistance was
associated with the average percentage error of 0.75%.
The proposed approach utilizes only the single-ended voltage

measurements.Most of the accurate traveling-wave-based fault-
location methods are founded on the double-ended measure-
ments. The nontraveling-wave fault-location principle of [8]
is based on the synchronized double-ended voltage and cur-
rent measurements as well. Fault locating with the approach
of [8], considering different fault resistances and five fault lo-
cations along a 500 kV, 1000-km-long bipolar HVDC trans-
mission line, was associated with the average estimation errors
of 0.2131%, 0.3043%, and 0.3507% for the PG, PN, and PNG
faults, respectively. It can be comprehended that the approach
of [8] led to higher percentage errors in location estimation of
the PN and PNG faults compared to those obtained by the pro-
posed method, 0.0777% for the PN faults and 0.0726% for the
PNG faults. However, in the case of PG faults, the average per-
centage error obtained by the approach of [8] is slightly lower
compared to that obtained by the proposed method, 0.2881%.
Of course, this can be acceptable with attention to less required
measurement data and no need for transmitting and synchro-
nizing measurements of both ends in the proposed method.
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IV. CONCLUSION

In this paper, a solution for the fault-location problem in
HVDC transmission lines, from the machine-learning and the
pattern-recognition point of views has been presented. In the
proposed fault-location method, which is based on the similarity
measure of the postfault signals using the Pearson correlation
coefficient, only the voltage samples measured at one of the
line terminals are required. Therefore, in addition to increasing
the reliability in access to the required measured data, problems
such as transmitting and synchronizing measurements of both
ends, and the combination of measurement errors which might
occur when more than one signal is used, are not relevant. The
results of numerical studies performed on a bipolar HVDC
system indicate sufficient accuracy and efficiency of the pro-
posed method. For the primarily generated test patterns, the
obtained average errors for the PG, PN, and PNG faults are
0.2881%, 0.0777% and 0.0726%, respectively. The impact
of noise and the effect of using alternative similarity/distance
measures, current signals instead of voltage signals, different
sampling frequencies, and different time window lengths have
been investigated in the sample system. The examinations show
that unlike the traveling-wave-based methods, the dependency
of the method’s accuracy on the sampling frequency is not
significant.

REFERENCES

[1] O. M. K. K. Nanayakkara, A. D. Rajapakse, and R. Wachal, “Location
of DC line faults in conventional HVDC systems with segments of
cables and overhead lines using terminal measurements,” IEEE Trans.
Power Del., vol. 27, no. 1, pp. 279–288, Jan. 2012.

[2] O.M.K. K. Nanayakkara, A. D. Rajapakse, and R.Wachal, “Traveling-
wave-based line fault location in star-connected multiterminal HVDC
systems,” IEEE Trans. Power Del., vol. 27, no. 4, pp. 2286–2294, Oct.
2012.

[3] M. B. Dewe, S. Sankar, and J. Arrillaga, “The application of satellite
time references to HVDC fault location,” IEEE Trans. Power Del., vol.
8, no. 3, pp. 1295–1302, Jul. 1993.

[4] C. Ping, X. Bingyin, L. Jing, and G. Yaozhong, “Modern travelling
wave based fault location techniques for HVDC transmission lines,”
Trans. Tianjin Univ., vol. 14, no. 2, pp. 139–143, Apr. 2008.

[5] A. Swetha, P. K. Murthy, N. Sujatha, and Y. Kiran, “A novel technique
for the location of fault on a HVDC transmission line,” J. Eng. Appl.
Sci., vol. 6, no. 11, pp. 62–67, Nov. 2011.

[6] M. Ando, E. O. Schweitzer, and R. A. Baker, “Development and
field-data evaluation of single-end fault locator for two-terminal
HVDC transmission lines-part 2: algorithm and evaluation,” IEEE
Trans. Power App. Syst., vol. PAS-104, no. 12, pp. 3531–3537, Dec.
1985.

[7] Y.-J. Kwon, S.-H. Kang, D.-G. Lee, and H.-K. Kim, “Fault location
algorithm based on cross correlation method for HVDC cable lines,”
in Proc. IET Int. Conf. Develop. Power Syst. Protect., Glasgow, U.K.,
2008, pp. 360–364.

[8] J. Suonan, S. Gao, G. Song, Z. Jiao, and X. Kang, “A novel fault-loca-
tion method for HVDC transmission lines,” IEEE Trans. Power Del.,
vol. 25, no. 2, pp. 1203–1209, Apr. 2010.

[9] “PSCAD/EMTDC User’s Guide,” Manitoba HVDC Research Ctr.,
Winnipeg, MB, Canada, 2005.

[10] M. Szechtman, T. Margaard, J. P. Bowles, C. V. Thio, D. Woodford, T.
Wess, R. Joetten, G. Liss, M. Rashwan, P. C. Krishnayya, P. Pavlinec,
V. Kovalev, K. Maier, J. Gleadow, J. L. Haddock, N. Kaul, R. Bunch,
R. Johnson, G. Dellepiane, and N. Vovos, “The CIGRE HVDC bench-
mark model-a new proposal with revised parameters,” Electra, no. 157,
pp. 61–65, Dec. 1994.

[11] The lower Churchill project DC1010-voltage and conductor op-
timization newfoundland and labrador hydro-lower Churchill
project, Exhibit CE-01 Rev.1 (Public) Apr. 2008. [Online]. Avail-
able: http://www.pub.nf.ca/applications/muskratfalls2011/files/ex-
hibits/abridged/CE-01R1-Public.pdf

[12] M. O. Faruque, Y. Zhang, and V. Dinavahi, “Detailed modeling
of cigre HVDC benchmark system using PSCAD/EMTDC and
PSB/SIMULINK,” IEEE Trans. Power Del., vol. 21, no. 1, pp.
378–387, Jan. 2006.

[13] G. W. Swift, “The spectra of fault-induced transients,” IEEE Trans.
Power App. Syst., vol. PAS-98, no. 3, pp. 940–947, May/Jun. 1979.

[14] M. Grcar, D. Mladenic, B. Fortuna, and M. Grobelnik, “Data sparsity
issues in the collaborative filtering framework,” in Advances in Web
Mining and Web Usage Anal., Lecture Notes in Comput. Sci, O. Nas-
raoui, O. Zaiane, M. Spiliopoulou, B. Mobasher, B. Mas, and P. S. Yu,
Eds. New York: Springer, 2006, vol. 4198, pp. 58–76.

[15] D. Naidoo and N. M. Ijumba, “HVDC line protection for the proposed
future HVDC systems,” in Proc. Int. Conf. Power Syst. Technol.—Pow-
erCon, Singapore, 2004, vol. 2, pp. 1327–1332.

[16] Y. Zhang, N. Tai, and B. Xu, “Fault analysis and traveling-wave pro-
tection scheme for bipolar HVDC lines,” IEEE Trans. Power Del., vol.
27, no. 3, pp. 1583–1591, Jul. 2012.

[17] Z. Xiao-Dong, T. Neng-Ling, J. S. Thorp, and Y. Guang-Liang, “A
transient harmonic current protection scheme for HVDC transmission
line,” IEEE Trans. Power Del., vol. 27, no. 4, pp. 2278–2285, Oct.
2012.

[18] T. V. Prasad and S. I. Ahson, “Data mining for bioinformatics-mi-
croarray data,” in Bioinformatics: Applicat. in Life and Environmental
Sci, M. H. Fulekar, Ed. New York: Springer, 2009, pp. 77–144.

[19] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning,” Artif. Intell. Rev., vol. 11, no. 1, pp. 11–73, Feb. 1997.

[20] “MATLAB User’s Guide: R2012a Documentation,” MathWorks Inc,
Natick, MA, 2012.

Mohammad Farshad (S’11) was born in
Gonbad-e-Qabus, Iran, in 1981. He received
the B.Sc. degree in power transmission and dis-
tribution networks engineering from Power and
Water University of Technology (PWUT), Tehran,
Iran, in 2003, and the M.Sc. degree in power
system engineering from Ferdowsi University of
Mashhad, Mashhad, Iran, in 2006, where he is
currently pursuing the Ph.D. degree in power
system engineering.
His main research interest is the application of

intelligent systems in power system protection and operation.

Javad Sadeh was born in Mashhad, Iran, in
1968. He received the B.Sc. and M.Sc. degrees
in electrical engineering (Hons.) from Ferdowsi
University of Mashhad, Mashhad, Iran, in 1990
and 1994, respectively, and the Ph.D. degree in
electrical engineering from Sharif University of
Technology, Tehran, Iran, with the collaboration of
the electrical engineering laboratory of the Institut
National Polytechnique de Grenoble (INPG),
Grenoble, France, in 2001.
Currently, he is an Associate Professor in the De-

partment of Electrical Engineering, Ferdowsi University of Mashhad. His re-
search interests are power system protection, dynamics, and operation.


